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Abstract—Influenced by complex interactions at the inter-
section of air and water, the fate of objects floating in the
ocean is difficult to predict even a few days into the future.
Despite the complexities, long-term ocean trajectory prediction
has many important applications for search and rescue missions,
ecological studies, and disaster remediation. Inspired by the
DARPA Forecasting Floats in Turbulence challenge, we present
an open-source benchmark dataset for measuring progress in
ocean trajectory modeling. The dataset is based on a collation of
ocean drifter trajectories and archival wind and current data. We
hope it will enable further development of models tuned for the
complexities of drifter trajectory prediction. In addition to the
benchmark dataset, we also provide a baseline solution set built
using OpenDrift, an open-source software package for modeling
the trajectories of objects in the ocean or atmosphere.

I. INTRODUCTION

Ocean drifters are non-actuated, freely-floating buoys that
are deployed in the ocean. They are equipped with instru-
ments to measure physical parameters of the ocean such as
temperature, wind speed and direction, currents, and salinity.
Since ocean drifters are non-actuated, they are relatively cheap
to build and deploy. Consequently, they are widely deployed
throughout the world to aid with climate research, oceano-
graphic research, storm and weather forecasting, and oil spill
monitoring.

However, since ocean drifters are non-actuated, once de-
ployed, they drift freely with surface wind and ocean cur-
rents. If strategic deployment is not employed, a common
phenomenon is that drifters end up getting clumped together in
the same area, following the same trajectories. This is often an
undesirable setting for modelling physical processes because
measurements will come from the same regions in the ocean.
If somehow we are able to predict where drifters will end up
after a given amount of days, we can strategically deploy them
to achieve maximum spatial coverage over a given area [1].
Extending further, if we are able to accurately predict drifter
trajectories, this would open the door for predicting trajectories
of other objects in the ocean. For example, trajectory predic-

Fig. 1. Global Drifter Array recorded by the Atlantic Oceanographic and
Meteorological Laboratory (AOML) Data Assembly Center

tions could be used to aid with search and rescue missions,
and for forecasting the effects of disasters in the ocean such
as oil spills [2].

To enable further development of models turned for the
complexities of drifter trajectory prediction, we built an open-
source benchmark dataset, consisting of the trajectories of 90
drifters, and archival wind and current data. We also built a
baseline solution set consisting of trajectory predictions for
each of the 90 drifters. We hope this baseline solution set will
be helpful for evaluating and measuring progress in drifter
trajectory prediction.

II. RELATED WORK

A. Forecasting Floats in Turbulence Challenge

The Forecasting Floats in Turbulence (FFT) challenge was
a 30 day challenge conducted from November to December
2021 by the Defence Advanced Research Project Agency
(DARPA) [3]. In this challenge, competitors were given 20
days of ocean drifter trajectories as a training data, and were
tasked with forecasting the exact position of each drifter every



2 days for the remaining 10 days. Despite the straightforward
goals of this challenge, the task of predicting ocean drifter
trajectories over a 10 day period proved to be remarkably
difficult. Fewer than half of the participants (14/31) predicted
any of the 90 drifter positions on the last day to within 32km
of the true position. The winner of the competition was Second
Sign Predictions, a single-person team, Chris Wasson, who is
an engineer in Southern California. When interviewed about
his thoughts on the challenge, Wasson gave further insights
into the difficulties of the challenge:

There are still many examples in the challenge float
data where the float trajectory disagrees strongly
with all available ocean current and wind data
at that latitude/longitude. I think this is a strong
indication that one of the biggest remaining hurdles
in this problem is not in modeling surface effects
but in identifying errors in these models, particularly
ocean surface current models.1

The DARPA FFT challenge took an important exploratory step
into understanding the effects of wind, waves, and currents on
objects floating in the ocean. It also sparked further investiga-
tion into drifter trajectory prediction and its challenges.

Fig. 2. Drifters used in the DARPA FFT challenge

B. OpenDrift

OpenDrift is an open-source software package for modelling
the trajectories of objects floating in the ocean or atmosphere
[4]. It is built in Python and consists of four main classes.
The first is the LagrangianArray class which describes
a particle in OpenDrift and its properties. The second is
the Model class which corresponds to the physics of a
trajectory model and takes care of updating particle properties
such as position and velocity at each time step. Each model
in OpenDrift must include an update function which takes
environmental data as input, and will update particle prop-
erties accordingly. OpenDrift provides several built-in models
such as OceanDrift, OpenOil, Leeway, and OpenBerg,
however the framework has the flexibility to define custom
models as well. The third class is the Reader class which
is responsible for reading and processing environmental data
from a given source, such as a NetCDF file. Readers are also
responsible for retrieving environmental variables at a given
position and time. Built-in OpenDrift readers use bilinear
interpolation to approximate environmental variables between
readings, however custom interpolation methods can be also

1https://www.darpa.mil/news-events/2021-12-13

be defined. The fourth and final class is the Writer class
which takes care of saving the results of a simulation to a file.

Running simulations in OpenDrift can be as simple as
initializing a model, defining readers for each environmental
data file, seeding particles at some position and time, and
then starting the simulation. The results can be visualized as
plots, animations, or saved to a file for further processing.
OpenDrift proved to be a useful and easy-to-use package for
modelling and visualizing trajectories, and we took advantage
of its capabilities when building our baseline solution set.

C. Navigating Stratospheric Balloons
Understanding the effects of physical parameters on strato-

spheric balloons was key to the study of Bellemare et al [5].
In this study, Bellemare et al. used reinforcement learning
techniques to keep Loon balloons within 50 kilometers of a
ground station for effective communication, a term referred to
as station-keeping. Loon balloons are similar to ocean drifters
in the sense that their trajectories are predominantly dictated
by physical parameters, namely wind speed and direction.
However, Loon balloons are able to control their vertical
motion by pumping air ballast in and out of a fixed-volume
envelope, while ocean drifters only have control over initial
deployment location. The goal for the study of Bellemare et
al. was to build an effective station-keeping flight controller,
which would ascend and descend a Loon balloon to different
altitudes to follow favourable wind patterns.

A notable challenge throughout this study was working with
imperfect, incomplete, and low-resolution environmental data.
This was also a challenge in the DARPA FFT competition as
well as in our work compiling the dataset. However, despite
the challenges, Bellemare et al. were still able to utilize wind
forecasts and implement an effective flight controller that
outperformed Loon’s previous algorithm. We hope our work
building this dataset will enable models to achieve similar
success in utilizing wind and current forecasts for drifter
trajectory prediction.

III. DATASET

The dataset we have built is comprised of ocean drifter
trajectory data, observational wind and current data, and fore-
cast wind and current data. The data has been collated from
multiple sources such as the Global Forecast System (GFS),
the Real-Time Ocean Forecast System (RTOFS), the Global
Ocean Forecast System (GOFS), Wave-Watch 3 (WW3), and
the Defence Advanced Research Project Agency (DARPA).
Detailed descriptions of the dataset are provided below and
summarized in Table I.

A. Ocean Drifter Trajectory Data
Ocean drifter trajectory data is taken from the DARPA FFT

challenge archives. It contains the locations of 90 drifters,
updated every hour, from November 2nd to December 2nd

2021. All the drifter trajectories over the 30 days are enclosed
in the region [103-175]° E × [22.5-50]° N which we ensure is
covered by all our environmental data. We provide the drifter
trajectory data as a comma-separated values (.csv) file.



Fig. 3. DARPA drifter trajectories included in our dataset

B. Observational Data

Observational wind data is taken from the GFS Analysis
dataset. It has a spatial resolution of 0.5° E × 0.5° N and a
temporal resolution of 6 hours. Observational current data is
taken from the GOFS 3.1 dataset. It has a spatial resolution of
0.08° E × 0.04° N and a temporal resolution of 3 hours. Both
the wind and current data cover time periods from November
2nd to December 2nd 2021. We provide this observational data
as NetCDF (.nc) files with global spatial coverage. Due to the
large nature of these files, we also provide a processed version
as NumPy data (.npy) files with spatial coverage [93-185]° E
× [12.5-60]° N. We chose these bounds to cover the region
containing all drifter trajectories, plus 10° of padding.

C. Forecast Data

Forecast current data is taken from the global RTOFS
dataset. RTOFS is an 8-day forecast system with a spatial
resolution of 0.08° E × 0.08° N and a temporal resolution of 1
hour for days 1 to 3, and 3 hours for days 3 to 8. The RTOFS
data has global spatial coverage and covers the time period
from November 21st to November 30th 2021. For forecast wind
data, we selected data from two different sources. The first is
from GFS, a 16-day forecast system with a spatial resolution
of 0.5° E × 0.5° N and a temporal resolution of 3 hours. The
GFS data spatially covers [0-360]° E × [5-90]° N from October
29th to December 6th 2021. The second is from WW3, a 7-day
forecast system with a spatial resolution of 0.5° E × 0.5° N
and a temporal resolution of 3 hours for days 1 to 3 and 6
hours for days 3 to 7. The WW3 data covers [0-360]° E ×
[5-60]° N from Nov 1st to November 28th 2021. In addition to
forecast wind data, the WW3 data also includes wave forecasts
with the same spatial and temporal resolutions. We provide all
forecast data as NetCDF (.nc) files.

IV. BASELINE SOLUTIONS

Our baseline solution set contains trajectory predictions for
all 90 drifters, from Nov. 2nd to Dec. 2nd 2021. We generated
this solution set using OpenDrift and observational wind and
current data. For the trajectory model, we used the built-
in model OceanDrift, which seemed appropriate for our
application because it is a buoyant particle trajectory model.
To generate the results, we added readers for each of our
observational data files, seeded 100 particles in a small radius

around each drifters initial location, and let OceanDrift’s
update function take care of updating the particles positions
at every time step.

We provide our baseline solution set as an array of NumPy
data files, one for every drifter. Each file contains the predicted
locations of a drifter for every hour between Nov. 2nd and
Dec. 2nd 2021. Each file also contains the interpolated wind
and current parameters at the predicted location, which will
be used by the OceanDrift model to generate the next
predicted location. In addition to the data files, we provide
plots and animations to visualize the results. These plots
contain the trajectories of the 100 simulated particles, and
contrast them with the true trajectories of the drifters.

Fig. 4. Trajectory prediction for drifter 1107 included in our baseline solution
set. Initial locations are shown in red, predicted trajectories are shown in grey,
and predicted final locations are shown in blue. The true trajectory is shown
as a dotted blue line, and the true final location is shown as a black x.

Although our solution set is relatively naive, in the sense
that we use a preexisting model and simply pass in data to
generate predictions, we hope it will provide a useful baseline
for measuring progress in drifter trajectory prediction.

V. CHALLENGES

During the process of compiling the dataset and generating
baseline solutions, we encountered several challenges. The
main challenge was building the dataset from data spread
across multiple sources, each with different resolutions, pro-
jections, time ranges, and spatial coverage. The second major
challenge was verifying that OpenDrift was interpreting our
data files correctly and generating the correct trajectories.

A. Building the dataset

Once we had compiled drifter trajectory data from the
DARPA FFT challenge archives, obtaining high-resolution
environmental data to match the time range and region of
the challenge proved to be a difficult task. Not only was
the data spread across multiple sources, but each source had
different spatial and temporal resolutions, different projections,
and different data formats. For example, we found high res-
olution observational current data from GOFS, with a spatial
resolution of 0.08° E × 0.04° N and a temporal resolution
of 3 hours. However, for observational wind data, the highest
resolution data we could find was through GFS, with a spatial
resolution of 0.5° E × 0.5° N and a temporal resolution of 6
hours.



TABLE I
DATASET CONTENTS

Source Type Parameters Spatial Reso-
lution

Temporal Resolution Spatial Coverage Temporal Coverage

GFS Analysis observational wind 0.5° E × 0.5° N 6 hours global Nov. 2nd - Dec 2nd 2021
GOFS 3.1 observational current 0.08° E × 0.04°

N
3 hours global Nov. 2nd - Dec 2nd 2021

RTOFS 8-day forecast current 0.08° E × 0.08°
N

1 hour (days 1-3), 3
hours (days 3-8)

global Nov. 21st - Nov 30th

2021
GFS forecast 16-day forecast wind 0.5° E × 0.5° N 3 hours (0-360)° E × (5-90)° N Oct. 29th - Dec 6th 2021
WW3 7-day forecast wind, waves 0.5° E × 0.5° N 3 hours (days 1-3), 6

hours (days 3-7)
(0-360)° E × (5-60)° N Nov. 1st - Nov 28th

2021
DARPA observational drifter trajecto-

ries
N/A 1 hour (103-175)° E × (22.5-

50)° N
Nov. 2nd - Dec 2nd 2021

For forecast data, in addition to the data sources having
different resolutions, we found that forecast data is not retained
for long periods after its publishing date. This made obtaining
archival forecasts a difficult, and in some cases, impossible
task. Fortunately, at the time of the DARPA FFT competition,
we had downloaded and saved some forecasts, and have
included those in the dataset. However for days we didn’t
record, we could not find any source that had retained current
and wind forecasts, which is why there are some gaps in the
dataset. Specifically, we are missing current forecasts from
Nov. 2 nd to Nov 20th and from Nov. 31st to Dec. 2nd. We are
also missing WW3 forecasts from Nov 29th to Dec. 2nd.

Another challenge we encountered while building the
dataset was dealing with different formats of data across
different sources. For example, GFS stores observational wind
data as single time files, which means there is one output file
for every 6 hours, resulting in 120 files to cover the dates of
the competition. This is in contrast to GOFS, which stores
observational current data as multi-time files, and just one file
is needed to cover the dates of the competition. For forecast
data, RTOFS provides current forecasts as unprojected data,
meaning that the data has not been projected down to a 2D
grid. This is in contrast to all other sources which provide
projected data. To deal with these formatting differences and
to make the dataset as consistent as possible, we employed
tools such as the Climate Data Operators (CDO) [6] which
are a collection of operators used to manipulate and analyze
environmental data.

Despite the challenges, we were still able to compile the
data into a relatively consistent and usable format. We used
the dataset for building baseline solutions, and believe it can
be used as is to help model drifter trajectories. We are also
actively looking for ways to further process and improve the
dataset, and we discuss some of those ideas below.

B. Verifying Baseline Solutions

After generating our baseline solution set using OpenDrift,
the results were certainly not ideal. The predicted trajectories
were significantly different than the true trajectories, and often
in the opposite direction. At first, we thought that there was a
problem with how OpenDrift was interpreting our data. To

test this we ran verification steps where we got wind and
current values at a given position and time from the dataset,
and verified that they were indeed the values used during the
OpenDrift simulation. To our surprise they were infact the
same for all of our test points. Furthermore, we tried running
shorter, 10-day predictions using OpenDrift, and the results
were much closer to the true trajectories. We came to the
conclusion that the quality of our solution set is not due to
issues within OpenDrift, but rather due to the difficulties of
long-term drifter trajectory prediction.

Fig. 5. 30 day prediction (left) versus 10 day prediction (right) for drifter
1187

VI. FUTURE WORK

A clear next step after building this dataset is to implement
machine learning techniques to train a model for drifter tra-
jectory prediction, and to improve upon our baseline solution
set. In addition to this, we would also like to categorize
drifter trajectories in our dataset, build a framework to quantify
and evaluate results, and build a secondary dataset for Argo
drifters.

A. Categorizing Drifter Trajectories

A common practice when compiling a dataset is catego-
rizing the data [7]. Categorizing data not only makes the
dataset more readable, but can also help with developing and
evaluating models. By categorizing drifter trajectories in our
dataset, we would have a concrete measure to evaluate the
performance of a trajectory model, and would know which



drifter categories it models well, and which categories it needs
improvement.

When building our baseline solution set, we noticed that
the OceanDrift model is able to model straight drifter
trajectories more accurately than drifter trajectories with large
curves or loops. Thus we would like to categorize and rank
drifter trajectories based on the straightness of the trajectory.
We could employ techniques such as identifying loops in
discrete drifter trajectories [8], and measuring deviance from
a straight trajectory to accomplish this. In addition, we could
categorize drifter trajectories by distance travelled, distance to
land, and by region.

Fig. 6. A relatively straight trajectory prediction (left) versus a curved and
looped trajectory prediction (right)

B. A Framework to Quantify and Evaluate Predictions

When building our baseline solution set, we did not have
a framework in place to quantitatively evaluate and score a
trajectory prediction. We had evaluated predictions by manu-
ally analyzing plots and animations, which going forward, is
not a reliable evaluation scheme. To fix this, we would like to
build a framework which would use quantitative measures such
as position error to score trajectory predictions. This would
allow us to evaluate and compare trajectory models in a less
subjective way, and would allow us to get quantitative results
for our baseline solution set.

C. Building an Argo Drifter Dataset

Argo is an international program, similar to DARPA, that
deploys ocean drifters to measure physical parameters of the
ocean. However, Argo floats only report their location once
every 10 days, in contrast to the drifters in the DARPA FFT
challenge which reported their location every hour. Taking in
account what we learned while building this dataset, we would
like to build a secondary dataset for Argo drifters. The dataset
would include the trajectories of Argo drifters over a longer
period of time, accompanied by relevant wind and current data.
Since Argo drifters report their location much less frequently,
this dataset could pose new challenges for drifter trajectory
prediction and could help tune models to deal with sparse
data.

VII. CONCLUSION

In this paper, we presented a benchmark dataset consisting
of the trajectories of 90 drifters, accompanied with relevant

Fig. 7. Global Argo drifter array on April 24th 2022

wind and current data. We also presented a baseline solution
set consisting of trajectory predictions for each of the 90
drifters, built using OpenDrift [4]. We hope that this dataset
will enable further development of models tuned for the
complexities of drifter trajectory prediction, and we hope
the baseline solution set will provide a concrete measure to
evaluate the progress and performance of a model.
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